Permutation Groups
نویسندگان
چکیده
The theory of permutation groups is essentially the theory of symmetry for mathematical and physical systems. It therefore has major impact in diverse areas of mathematics. Twentieth-century permutation group theory focused on the theory of finite primitive permutation groups, and this theory continues to become deeper and more powerful as applications of the finite simple group classification, and group representation theory, lead to astonishingly complete classifications and asymptotic results.
منابع مشابه
QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...
متن کاملOn minimal degrees of faithful quasi-permutation representations of nilpotent groups
By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....
متن کاملPERMUTATION GROUPS WITH BOUNDED MOVEMENT ATTAINING THE BOUNDS FOR ODD PRIMES
Let G be a transitive permutation group on a set ? and let m be a positive integer. If no element of G moves any subset of ? by more than m points, then |? | [2mp I (p-1)] wherep is the least odd primedividing |G |. When the bound is attained, we show that | ? | = 2 p q ….. q where ? is a non-negative integer with 2 < p, r 1 and q is a prime satisfying p < q < 2p, ? = 0 or 1, I i n....
متن کاملThe remoteness of the permutation code of the group $U_{6n}$
Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness. We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$. Moreover, ...
متن کاملThe False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES
A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009